
Hadamard Matrix Connection to Octonion Algebras

February 10, 2010 Richard Lockyer 1

For the purposes of this paper, take as the Right Octonion Algebra[1] prototype R(0) the
definition expressed in the permutation triplet set

( e1 e2 e3 ) ( e7 e6 e1 ) ( e5 e7 e2 ) ( e6 e5 e3 ) ( e5 e4 e1 ) ( e6 e4 e2 ) ( e7 e4 e3 )

If we look at just the signs of the products in the multiplication table, we have the
following

e0 e1 e2 e3 e4 e5 e6 e7
e0 +1 +1 +1 +1 +1 +1 +1 +1
e1 +1 -1 +1 -1 -1 +1 -1 +1
e2 +1 -1 -1 +1 -1 +1 +1 -1
e3 +1 +1 -1 -1 -1 -1 +1 +1
e4 +1 +1 +1 +1 -1 -1 -1 -1
e5 +1 -1 -1 +1 +1 -1 -1 +1
e6 +1 +1 -1 -1 +1 +1 -1 -1
e7 +1 -1 +1 -1 +1 -1 +1 -1

Vectors formed from the rows of this matrix are orthogonal since they have an inner
product <a,b> = 0. The same holds for the columns. The inner product of any row or
column with itself <a,a> = 8, the dimension of the vectors. This makes the matrix what is
called a Hadamard matrix of dimension 8. This connection is well known[2].

This matrix may be placed in a symmetric form by reordering the rows.

e0 e1 e2 e3 e4 e5 e6 e7

e0 +1 +1 +1 +1 +1 +1 +1 +1

e6 +1 +1 -1 -1 +1 +1 -1 -1

e7 +1 -1 +1 -1 +1 -1 +1 -1

e5 +1 -1 -1 +1 +1 -1 -1 +1

e4 +1 +1 +1 +1 -1 -1 -1 -1

e3 +1 +1 -1 -1 -1 -1 +1 +1

e1 +1 -1 +1 -1 -1 +1 -1 +1

e2 +1 -1 -1 +1 -1 +1 +1 -1

Now the matrix of signs is of the form

A A
A -A

where A is the 4x4 matrix
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+1 +1 +1 +1
+1 +1 -1 -1
+1 -1 +1 -1
+1 -1 -1 +1

Define the Left Octonion Algebra[1] prototype L(0) as the algebra where all permutation
rules for R(0) are negated. This algebra may be considered the commutation of the Right
Octonion Algebra R(0), since changing the order of multiplication will be the same as
negating the rules for all permutations. The multiplication table signs for the Left
Octonion Algebra prototype L(0) are members of the table

e0 e1 e2 e3 e4 e5 e6 e7

e0 +1 +1 +1 +1 +1 +1 +1 +1
e1 +1 -1 -1 +1 +1 -1 +1 -1
e2 +1 +1 -1 -1 +1 -1 -1 +1
e3 +1 -1 +1 -1 +1 +1 -1 -1
e4 +1 -1 -1 -1 -1 +1 +1 +1
e5 +1 +1 +1 -1 -1 -1 +1 -1
e6 +1 -1 +1 +1 -1 -1 -1 +1
e7 +1 +1 -1 +1 -1 +1 -1 -1

The symmetric form for L(0) is a reorder on the columns instead of the rows just as a
Right(Left) Octonion multiplication table may be formed from a Left(Right) Octonion
table by transposing rows and columns.

e0 e6 e7 e5 e4 e3 e1 e2

e0 +1 +1 +1 +1 +1 +1 +1 +1
e1 +1 +1 -1 -1 +1 +1 -1 -1
e2 +1 -1 +1 -1 +1 -1 +1 -1
e3 +1 -1 -1 +1 +1 -1 -1 +1
e4 +1 +1 +1 +1 -1 -1 -1 -1
e5 +1 +1 -1 -1 -1 -1 +1 +1
e6 +1 -1 +1 -1 -1 +1 -1 +1
e7 +1 -1 -1 +1 -1 +1 +1 -1

There is a one to one connection between individual basis elements and permutations for
each of the eight Right or Left Octonion Algebras that will be the same for R(i) and L(i)
but different between R(i) and R(j), or L(i) and L(j) for i not equal to j. They may be
found by taking the non-scalar basis elements one at a time, cyclically rotating the three
permutation triplets the chosen basis element belongs to until the chosen basis element is
in the central position. For Right Octonion, the three basis elements to the right of the
chosen element is the permutation triplet associated with it, as will the one on the left for
Left Octonion. This is also the defining characteristic of “Right” and “Left” Octonion
Algebras, and the method to determine which you are dealing with.
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The associations are as follows for R(0) and L(0) respectively

( e1 e2 e3 ) and ( e1 e3 e2 ) e4

( e7 e6 e1 ) and ( e7 e1 e6 ) e3
( e5 e7 e2 ) and ( e5 e2 e7 ) e1
( e6 e5 e3 ) and ( e6 e3 e5 ) e2
( e5 e4 e1 ) and ( e5 e1 e4 ) e6
( e6 e4 e2 ) and ( e6 e2 e4 ) e7

( e7 e4 e3 ) and ( e7 e3 e4 ) e5

We will use these permutations as components of the algebras and use their associations
to the individual basis elements as a replacement scheme in the symmetric Hadamard
sign table.

Define a representation of our choice for the Right Octonion Algebra prototype R(0) with
the “vector” RP. Define the components of RP as follows indexed with their associated
basis element indices:

RP(0) == the set of basis products not covered by permutation triplet rules.
RP(6) == the closed set of basis product rules of the permutation triplet ( e5 e4 e1 )
RP(7) == the closed set of basis product rules of the permutation triplet ( e6 e4 e2 )
RP(5) == the closed set of basis product rules of the permutation triplet ( e7 e4 e3 )
RP(4) == the closed set of basis product rules of the permutation triplet ( e1 e2 e3 )
RP(3) == the closed set of basis product rules of the permutation triplet ( e7 e6 e1 )
RP(1) == the closed set of basis product rules of the permutation triplet ( e5 e7 e2 )
RP(2) == the closed set of basis product rules of the permutation triplet ( e6 e5 e3 )

Then, we may define the full set of product term rules for the Right Octonion prototype
R(0) as the inner product <RP, I>, where I is the identity {+1, +1, +1, +1, +1, +1, +1, +1}
and RP = { RP(0), RP(6), RP(7), RP(5), RP(4), RP(3), RP(1), RP(2) }.

We may similarly define the Dual of RP for Left Octonion to be LP with components

LP(0) == the set of basis products not covered by permutation triplet rules.
LP(6) == the closed set of basis product rules of the permutation triplet ( e5 e1 e4 )
LP(7) == the closed set of basis product rules of the permutation triplet ( e6 e2 e4 )
LP(5) == the closed set of basis product rules of the permutation triplet ( e7 e3 e4 )
LP(4) == the closed set of basis product rules of the permutation triplet ( e1 e3 e2 )
LP(3) == the closed set of basis product rules of the permutation triplet ( e7 e1 e6 )
LP(1) == the closed set of basis product rules of the permutation triplet ( e5 e2 e7 )
LP(2) == the closed set of basis product rules of the permutation triplet ( e6 e3 e5 )

LP = { LP(0), LP(6), LP(7), LP(5), LP(4), LP(3), LP(1), LP(2) }.



Hadamard Matrix Connection to Octonion Algebras

February 10, 2010 Richard Lockyer 4

Of course RP(0) = LP(0). These sets are invariant to definition changes between the
sixteen possible Octonion Algebras since e0 * ei and ei * e i are consistently defined across
all sixteen Octonion Algebras.

The rule sets for all eight Right Octonion Algebras can be formed from linear
combinations of the RP(n) elements, where the coefficients are either +1 or -1. The
following table replaces the e i in the symmetric ei * e j sign table row label with their
associated algebra component set RP(i). The symmetric table column labels e j are
replaced with Right Octonion R(j). The Hadamard table columns now correctly specify
the linear combinations of RP(n) for each of the Right Octonion Algebras.

R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7) permutation
RP(0) +1 +1 +1 +1 +1 +1 +1 +1 none
RP(6) +1 +1 -1 -1 +1 +1 -1 -1 ( e5 e4 e1 )
RP(7) +1 -1 +1 -1 +1 -1 +1 -1 ( e6 e4 e2 )
RP(5) +1 -1 -1 +1 +1 -1 -1 +1 ( e7 e4 e3 )
RP(4) +1 +1 +1 +1 -1 -1 -1 -1 ( e1 e2 e3 )
RP(3) +1 +1 -1 -1 -1 -1 +1 +1 ( e7 e6 e1 )
RP(1) +1 -1 +1 -1 -1 +1 -1 +1 ( e5 e7 e2 )
RP(2) +1 -1 -1 +1 -1 +1 +1 -1 ( e6 e5 e3 )

Likewise, the eight Left Octonion Algebras can be formed from linear combinations of
the LP(n), where the table of coefficients is identical to that for RP(n) combinations since
we associate the negated permutations with LP.

L(0) L(1) L(2) L(3) L(4) L(5) L(6) L(7) permutation
LP(0) +1 +1 +1 +1 +1 +1 +1 +1 none
LP(6) +1 +1 -1 -1 +1 +1 -1 -1 ( e5 e1 e4 )
LP(7) +1 -1 +1 -1 +1 -1 +1 -1 ( e6 e2 e4 )
LP(5) +1 -1 -1 +1 +1 -1 -1 +1 ( e7 e3 e4 )
LP(4) +1 +1 +1 +1 -1 -1 -1 -1 ( e1 e3 e2 )
LP(3) +1 +1 -1 -1 -1 -1 +1 +1 ( e7 e1 e6 )
LP(1) +1 -1 +1 -1 -1 +1 -1 +1 ( e5 e2 e7 )
LP(2) +1 -1 -1 +1 -1 +1 +1 -1 ( e6 e3 e5 )

Both of these representations of Right and Left Octonion Algebras may be seen to specify
what I have called the “elemental moves”[1][3] between algebras of the same type. Algebra
R(j) for j not zero is Algebra R(0) with all four permutations not including ej negated, and
the same for L(j) except we start with L(0). The columns then “operate” on the
multiplication rules in order to change the overall definition of the particular algebra.

Define the operator Iso(i) == H( , i )[5] as the ith column vector of the symmetric
Hadamard sign matrix H. Then we may compactly define a representation of all Right
and Left Octonion Algebras as
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R(i) = < Iso(i), RP >

L(i) = < Iso(i), LP >

The inner product here should be interpreted as the sum of rules individually operated on
by the operator Iso().

We may define a composition of Iso() operators where: {do C then do B} is identical to
do the single operation {A} defines A in terms of B and C as

A(n) = B(n)C(n) for n = 0-7

or equivalently, define

A = B C

This composition definition on the operator Iso() is a commutative and associative
algebra.

Iso() may be interpreted as an operator that morphs the partitioned components of the
algebra R(0) or L(0) into one of the others of the same type. We may represent this as

R(j) = Iso(j) R(0)
L(j) = Iso(j) L(0)

Clearly Iso(0) is the identity morph. The operation for Iso(j) for j not 0 may be described
as negating the four permutations that do not include the basis element ej .

We can use the composition rule for Iso() on the last two expressions.

Iso(i)R(j) = [ Iso(i) Iso(j) ] R(0)
Iso(i)L(j) = [ Iso(i) Iso(j) ] L(0)

Examining the various combinations of Iso(i) Iso(j) we find

Iso(i)Iso(i) = Iso(0)
Iso(0)Iso(j) = Iso(j)
Iso(i)Iso(j) = Iso(k) for {ijk} one of the octonion permutation triplet index set.

From these rules Iso(i) can be shown to morph between any Right Algebras R(j) and R(k)
or between any Left Algebras L(j) and L(k). It is not possible to use Iso(i) to map
between Left and Right Octonion Algebras. The elemental map between Right and Left
requires the negation of the three permutations that all include one of the basis elements.
The sign vector for this move would have five +1 and three -1, and as such cannot be
represented by a Hadamard matrix row or column. It can however be represented by a
vector of sign components.
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Define Dual(0) == {+1, -1, -1, -1, -1, -1, -1, -1}[5]

From our definitions of Right Octonion Algebras R(i) and Left Octonion Algebras L(i),
we may write

R(j) = Dual(0) L(j)
L(j) = Dual(0)R(j)

We may also define Dual(j) == Dual(0) Iso(j)

From this we can see Dual(i) also forms a commutative and associative algebra with itself
and Iso(j). The compositions may be shown to be

Dual(i)Dual(i) = Iso(0)
Dual(0) Dual(j) = Iso(j)
Dual(i)Dual(j) = Iso(k) for {ijk} one of the octonion permutation triplet index set.

Dual(i)Iso(i) = Dual(0)
Dual(0) Iso(j) = Dual(j)
Dual(j)Iso(0) = Dual(j)
Dual(i)Iso(j) = Dual(k) for {ijk} one of the octonion permutation triplet index set.

We then have the following

R(i) = Iso(0)R(i)
R(i) = Iso(i) R(0)
R(0) = Iso(i)R(i)
R(i) = Iso(j) R(k) for {ijk} a valid permutation triplet of basis indices

L(i) = Iso(0) L(i)
L(i) = Iso(i) L(0)
L(0) = Iso(i) L(i)
L(i) = Iso(j) L(k) for {ijk} a valid permutation triplet of basis indices

L(i) = Dual(0)R(i)
L(i) = Dual(i) R(0)
L(0) = Dual(i) R(i)
L(i) = Dual(j) R(k) for {ijk} a valid permutation triplet of basis indices

R(i) = Dual(0) L(i)
R(i) = Dual(i)L(0)
R(0) = Dual(i) L(i)
R(i) = Dual(j)L(k) for {ijk} a valid permutation triplet of basis indices
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The final connection is my Octonion Variance Sieve Process[1][4]. This process sorts out
product terms from any octonion expression into invariant and variant sets. An octonion
expression must be evaluated using a singular choice of Right or Left Octonion Algebra.
The invariant set includes all product terms that will not change sign when the expression
is evaluated in any of the other Octonion Algebras. The variant sets are product terms that
will all change signs together when the algebra is changed to any other. The variant sets
have no intersection. The two invariant sets are identical.

Define the expression result using Right Octonion Algebra R(j) as RR(j), and the
expression result using Left Octonion Algebra L(j) as LR(j). The Left(Right) sieves are
linear combinations of adds or subtracts of results over all Left(Right) expression results.
The signs correspond to the rows of our symmetric Hadamard table when RR(j) and
LR(j) are labels in the same columns as R(j) and L(j).

The invariant Left Octonion set is IL and the invariant Right Octonion set is IR. These
are 1/8 the straight sums of Right Results for IR and Left Results for IL. These are the
signs of the top row of the symmetric Hadamard matrix. Not coincidentally, this is the
row labeled by the algebra rules independent of the choice of algebra, RP(0) and LP(0).

I will depart slightly from my previous definitions for the variant sets by not changing the
order of the associated permutation index triplets between Right and Left sieves, and do
my now customary avoidance of implied order by encompassing the three indices with
{}. The signs for the sum/difference of Right Results RR(j) and Left Results LR(j) for 8x
the sieves sr{lmn} and sl{lmn} respectively are found in the row where permutation
triplet {lmn} is associated with RP(i) and LP(i) labeling the rows above.

The sieve symmetric table is then

Left sieve LR(0) LR(1) LR(2) LR(3) LR(4) LR(5) LR(6) LR(7)
Right sieve RR(0) RR(1) RR(2) RR(3) RR(4) RR(5) RR(6) RR(7)

IL IR +1 +1 +1 +1 +1 +1 +1 +1
sl{541} sr{541} +1 +1 -1 -1 +1 +1 -1 -1
sl{642} sr{642} +1 -1 +1 -1 +1 -1 +1 -1
sl{743} sr{743} +1 -1 -1 +1 +1 -1 -1 +1
sl{123} sr{123} +1 +1 +1 +1 -1 -1 -1 -1
sl{761} sr{761} +1 +1 -1 -1 -1 -1 +1 +1
sl{572} sr{572} +1 -1 +1 -1 -1 +1 -1 +1
sl{653} sr{653} +1 -1 -1 +1 -1 +1 +1 -1

The sieved sets are[1]

IR IL
½ [sl{541} + sr{541}] ½ [sl{541} - sr{541}]
½ [sl{642} + sr{642}] ½ [sl{642} - sr{642}]
½ [sl{743} + sr{743}] ½ [sl{743} - sr{743}]
½ [sl{123} + sr{123}] ½ [sl{123} - sr{123}]
½ [sl{761} + sr{761}] ½ [sl{761} - sr{761}]
½ [sl{572} + sr{572}] ½ [sl{572} - sr{572}]
½ [sl{653} + sr{653}] ½ [sl{653} - sr{653}]
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All of the above representations on the symmetric Hadamard matrix are combined in the
following summary table.

row row column column table table
L sieve LR(0) LR(1) LR(2) LR(3) LR(4) LR(5) LR(6) LR(7)

R sieve RR(0) RR(1) RR(2) RR(3) RR(4) RR(5) RR(6) RR(7)
L O L(0) L(1) L(2) L(3) L(4) L(5) L(6) L(7)

R O R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7)
L(0) e0 e6 e7 e5 e4 e3 e1 e2

R(0) e0 e1 e2 e3 e4 e5 e6 e7

IL IR LP(0) RP(0) e0 e0 +1 +1 +1 +1 +1 +1 +1 +1
sl{541} sr{541} LP(6) RP(6) e1 e6 +1 +1 -1 -1 +1 +1 -1 -1
sl{642} sr{642} LP(7) RP(7) e2 e7 +1 -1 +1 -1 +1 -1 +1 -1
sl{743} sr{743} LP(5) RP(5) e3 e5 +1 -1 -1 +1 +1 -1 -1 +1
sl{123} sr{123} LP(4) RP(4) e4 e4 +1 +1 +1 +1 -1 -1 -1 -1
sl{761} sr{761} LP(3) RP(3) e5 e3 +1 +1 -1 -1 -1 -1 +1 +1
sl{572} sr{572} LP(1) RP(1) e6 e1 +1 -1 +1 -1 -1 +1 -1 +1
sl{653} sr{653} LP(2) RP(2) e7 e2 +1 -1 -1 +1 -1 +1 +1 -1

To summarize, the Hadamard sign matrix connects Right and Left Octonion Algebra
prototypes to the full set of sixteen Right and Left forms. It further connects up the
Octonion Variance Sieve Process to the full set of Octonion Algebras.

Prototype R(0)  R O  R Sieve


Prototype L(0) L O  L Sieve

It is interesting to note that the set of Right Octonion Algebras and the operation Iso(), as
well as the set of Left Octonion Algebras and the operation Iso(), form proper Abelian
Groups[6]. The construction of the non-commutative, non-associative Right and Left
Octonion Algebras define these group characteristics. The group characteristics do not
define the algebras. I am hopeful that the application of group theoretical considerations
on this clean connection to Octonions will yield new insights that will only be realized on
return to the core foundations, the algebra itself.

I would like to thank Jens Koeplinger for his insights and desire to refine, clarify and
extend ideas I have tried to promote about the Octonions. His idea to abstract the
Octonion multiplication table morphs[7] was instrumental in the above crystallization of
what I had previously presented in perhaps overly wordy and difficult to understand
terms. I wish him happy hunting on his desire to extend our understanding of physical
reality through considerations on the Octonions.
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